

Hi-Techno Pump

A new generation of advanced metering pump technology!

Highly precise control offers a solution for every chemical dosing application.

A new generation of advanced metering

pump technology!

Capacity: 0.2 - 150 L/h

Highly precise control offers a solution for every chemical dosing application. Iwaki's IX Series are digitally controlled direct-drive diaphragm pumps. Years of experience in high-end motor technology result in extremely accurate and energy efficient metering pumps with high resolution.

The IX Series meet today's demand for automated chemical delivery in industries from water treatment to chemical process.

750:1 1000 mPa·s ±1% Degassing ability Turn down ratio Max. viscosity High accuracy **Energy savings** SUS head IX-C150S6FJ-TB-E IX-C150S6R-TB-E IX-C060S6FJ-TB-E

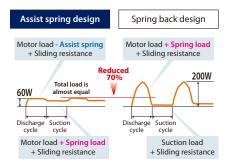
Capacity: 0.08 - 60 L/h

Precise chemical dosing operation and energy savings Advanced mechanism assists eco-friendliness

A wide turn down ratio

A control motor adjusts the discharge and suction speeds to meet a wide turndown ratio of 750:1.

C150 Capacity 0.2 - 150L/h C060 Capacity 0.08 - 60L/h



IX-C150TCR-TB-E

IX-C060TCR-TB-E

Energy savings and Eco-friendly

With the use of helical gears and spring assistance, power consumption is reduced by 70% compared to the standard spring back design.

Precise chemical dosing operation

The valve design maintains precise dosing at any flow rate whilst the motor regulates discharge and suction speeds to achieve high accuracy (+/-1%) all with a cost effective design from a mechanically driven diaphragm pump.

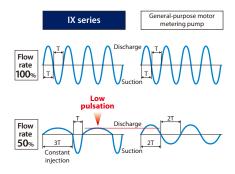
Efficient pump head design is incorporated with high compression

Fast priming without air locks is achieved with a high compression ratio due to a fixed (maximum) stroke length.

Maximum suction lift:

2_m

With an open discharge line and dry valve condition.


Degassing ability:

C060: 1.0 MPa, C150: 0.4 MPa

With a standard tubing layout.

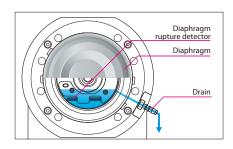
Constant injection with low impact

Flow control via discharge speed adjustment (with a fixed suction speed) assures constant injection at any flow rate. This system also reduces impact (inertia force) and load to the discharge line.

Viscous liquid transfer

Standard IX series is capable of pumping liquid viscosities of up to 1000mP•a.
Contact us for higher viscosity applications.

Compliant to world standards


One of the IX features is multi-voltage operation (100-240VAC) compatible worldwide. Compliant to UL, CE standards.

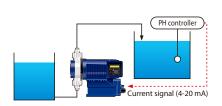
IP65

Drive and control units are sealed separately to an IP65 enclosure.

Safety design

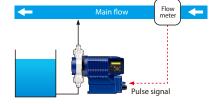
Standard to all models is a diaphragm rupture detector, protecting users and the environment. Also, a detector for abnormal operation protects the pipework in case of an accidental high discharge pressure caused by clogging or improper operation. A drain hole also ensures safe operation even when the diaphragm is damaged.

Easy operation on a variety of applications



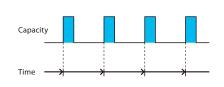
Automatic control

The IX can run in analogue, pulse, batch or interval batch modes.


Analogue operation

The pump operates in response to an input, (4-20mA) from a controller.

Pulse operation


When combined with a flow meter or contact head water meter, the IX pump gives a paced dose rate in proportion to the main flow rate.

Interval batch operation

Timed operation is possible with simple

pump programming via the keypad and is initiated with a pulse signal.

Cavitation prevention

When pumping viscous liquids, suction stroke speed can be varied to avoid developing cavitation.

(Programmable suction speed: 75%, 50% or 25% of the normal speed)

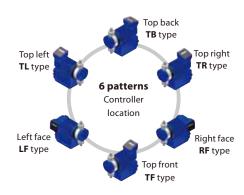
Degassing

Keypad operation or the contact signal (AUX) runs the pump at maximum spm in any mode for degassing.

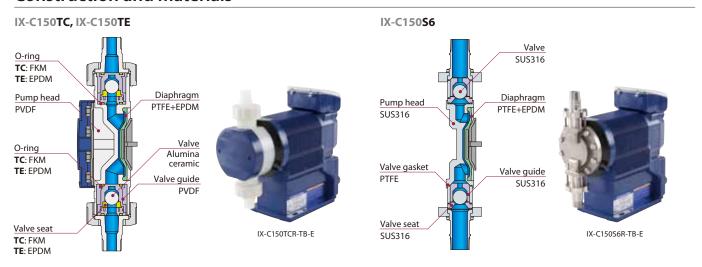
Calibration

The pump is calibrated prior to shipment, however we recommend recalibration when installed in your system due to pipe layout and liquid properties.

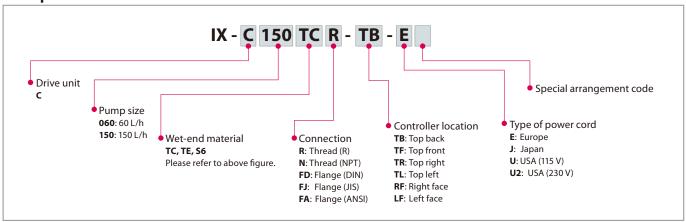
Operation history


Controller memory logs the total power connection time, operating time, number of strokes and number of power-up events.

Maintenance mode


This operation makes it possible to move the diaphragm forward with partial pump stroke operation facilitating diaphragm replacement.

User friendly design


The controller position can be selected from 6 mounting positions for operator convenience. Also, a character LCD with LED backlight and optimized keypad positions assist easy operation.

Construction and materials

Pump identification

Specifications of pump

Model	Capacity	Maximum pressure	Maximum viscosity	Liquid temperature range	Connection		Power consumption	Current draw	Mass		
	L/h	MPa	mPa•s	°C Note 2	Thread	Flange	W	Α	kg		
IX-C060(TC/TE)	0.08 - 60	1.0	1000	0 - 50	R : R1/2	FJ: JIS10K 15A FD: DIN PN10 DN15	62	0.8	9		
IX-C060S6 Note1	0.08 - 00	1.0	1000	0 - 80	N : 1/2NPT	FA: ANSI 150Lb 1/2"	02	0.6	11 12		
IX-C150(TC/TE)					4000	0 - 50	R : R3/4	FJ: JIS10K 20A FD: DIN PN10 DN20			9
IX-C150S6 Note1	0.2 - 150	0.4	1000	0 - 80	N: 3/4NPT	FA: ANSI 150Lb 3/4"	62	0.8	11 13		

- $\bullet \text{The max. discharge capacity is obtained in operation with clear water at ambient temperature and the max. discharge pressure. It gets higher as the pressure gets lower. } \\$
- \bullet Operating temperature range: 0-50 $^{\circ}\text{C}$ (Indoor use only)
- Operating humidity range: 0-90%RH (Non condensing in the controller)
- ${\color{red} \bullet } \ Contact \ us \ for \ other \ plumbing \ connections$
- For the IX-C150S6, a target flow rate may not be met when it is set to 1.0 L/h or below. For the IX-C060S6, a target flow rate may not be met when it is set to 0.4 L/h or below.

Note 1: For the IX-C150S6, accuracy is not guaranteed at flows below 1.0 L/h. For the IX-C060S6, accuracy is not guaranteed at flows below 0.4 L/h. Note 2: No viscosity change, Non freezing, No slurry.

Specification of controller

Monitors	LCD		16×2 backlight LCD				
Monitors	LED		Operation / Stop / Alarm				
Operation	Keypads		① START / STOP WEND MENU SSC ESC → Enter ↑ Up ↓ Down ← Left → Light				
	MAN (Manua	al)	C060: 80 mL/h - 60 L/h, C150: 200 mL/h - 150 L/h				
		Analogue control	4 - 20, 0 - 20, 20 - 4, 20 - 0 mA				
Operation mode	EXT	Pulse control	C060: 0.00625 mL/PLS - 120 mL/PLS, C150: 0.01560 mL/PLS - 300 mL/PLS				
	LAI	Batch control	C060: 6.25 mL/PLS - 120 L/PLS, C150: 15.6 mL/PLS - 300 L/PLS Note 1				
		Interval batch control	Time 0-9 day, 0-23 H, 1-59 min Capacity C060: 6.25 mL - 120 L, C150: 15.6 mL - 300 L Note 1				
	STOP		Operation stop at contact input				
Control function	PRIME		MAX spm operation by pressing the Up and Down keys				
Control function	Interlock		Operation stop at contact input				
	AUX		Operation with max. spm at contact input				
	STOP / Pre-STOP / AUX / Interlock		No-voltage contact or open collector				
Input Note 2	Profibus Note 3		Communication protocol: Profibus-DP				
input			International standard: Compliant to EN50170 (IEC61158)				
	Analogue		0-20 mA DC (Internal resistance is 200 Ω .)				
	Pulse		No-voltage contact or open collector (MAX pulse frequency is 100 Hz.)				
	Alarm 1 Note 4		No-voltage contact (Mechanical relay) 250VAC 3A (Resistive load)				
	Alailii i		Selectable: STOP, Pre-stop, Interlock, Leak Detection and Motor Overload.				
Output	Alarm 2 Note 4		No-voltage contact (PhotoMOS relay) AC250V 3A (Registive load)				
	Alailii Z		Selectable: STOP, Pre-STOP, Interlock, Leak Detection and Motor Overload.				
	Power supply		12VDC 30mA or below				
Safety function	Diaphragm rupture detection		The pump will be stopped when the diaphragm is raptured.				
Jaiety function	Overpressure detection		The pump will be stopped when the pump load has risen too high.				
Power voltage	100-240VAC	50/60Hz					

 $Note 1: The IX discharges a programmed flow volume per pulse in batch control. Default setting is 6.25 \ mL(C060) \ or 15.6 \ mL(C150).$

Note the volume per pulse varies during programming. The setting can also change after calibration and should be verified.Note 2: Purchase an optional external control signal cable for analogue signal input, pulse signal input and an interlock signal input. Purchase an optional STOP signal cable for STOP signal input, PreSTOP input and AUX signal input. Note 3: Contact us for use of the IX with Profibus control.

Note 4: Purchase an optional output signal cable for signal output.

• An earth leakage breaker with a rated current of 5A / current sensitivity of 30mA is recommended.

Optional accessories

DIN 5-pin connector cable External control signal cable (5m) (External control signal input) Selection No. IX0018

DIN 4-pin connector cable STOP signal and AUX signal cable (5m) (STOP signal input) Selection No. IX0019

DIN 4-pin connector cable Output signal cable (5m) (Signal output) Selection No. IX0020

Profibus converter Profibus communication

Points to be observed in pump installation and piping

Hi-Techno pump IX series are reciprocating pumps.

Reciprocating pumps generate pulsation in the suction and discharge piping. Special consideration, (different from the ordinary centrifugal pumps), should be given to this point when planning the pump installation and piping.

Prevention of pipe vibration

Discharge side inertial resistance Pid < 0.1 MPa

• Pid : Inertial resistance on discharge side

Inertial resistance means the pulsated impact force generated by the flow just upon entering discharge stroke. It is a phenomenon particular to a reciprocating pump which is generated as a result of the sudden application of acceleration to the liquid in the discharge piping. The condition "Pid < 0.1 MPa is given above as an approximate standard. If Pid becomes 0.1MPa or higher, vibration on the pipe is generated. So measures should be taken to cope with the influence of vibration on the pump, too.

Measures

- 1. Install pulsation prevention device (air chamber).
- 2. Enlarge the diameter and shorten the length of the discharge piping.

· Prevention of overfeeding

Pump differential pressure > Inertial resistance Pi

• The larger one of the suction side or the discharge side

Overfeeding means excessive flow of the liquid due to abnormal functioning of the check valve caused by pulsation of the liquid in the piping. Check carefully in case the differential pressure is low and in case the piping is too long even with the differential pressure value at 0.03 MPa.

- 1. Install air chamber.
- 2. Install back pressure valve

Prevention of suction failure

NPSHa > NPSHr

 $NPSHa = Pa - Pv \pm Phs - Pis * MPa$

*Or Pfs: whichever is the larger. (NPSH: Net positive suction head)

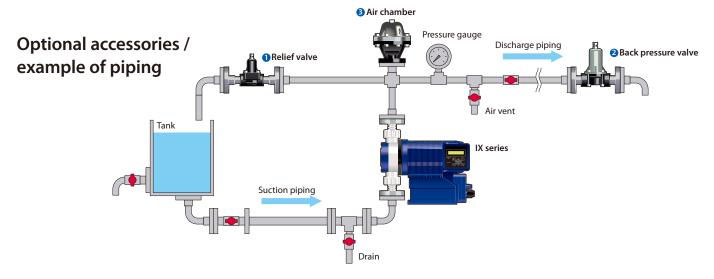
If NPSHa is not sufficient, the pump may be damaged by the flow-break or cavitation generated under such conditions.

- NPSHa: Absolute NPSH (MPa)
- NPSHr: Required NPSH (value particular to the pump) (MPa)
- Pa: Absolute pressure onto the tank liquid surface (MPa)
- PV: Liquid vapour pressure (MPa)
- · Phs: Pressure caused by the height of the suction side (MPa)
- (Flooded suction: +, Negative suction: -) · Pis: Inertial resistance on the suction side (MPa)
- · Pfs: Piping resistance on the suction side (MPa)

See the table below for NPSHr, inertia resistance(Pi) and applicable chambers.

Compressed air dissolves in solutions in a chamber. Supply air into the chamber periodically, or its performance may reduce.

It takes longer time for air to be compressed enough to deliver liquid as a flow rate gets lower.


Pump/Piping protection

Install a relief valve to protect the pump and piping from overpressure.

Performance

Model	Discharge line inertia resistance Pid		Suction line inertia resistance Pis					Applicable chamber	
	Flow range		Suction speed	ction speed NPSHr Viscosity		Priming lift	Materials		
	L/h	MPa/1m	%	MPa/1m				SUS	PVC
	to 60	4.4×10 ⁻³	100	4.4×10 ⁻³		1000 mPa•s		1.5 L	2.0 L
IX-C060	to 45	1.6×10 ⁻³	75	2.5×10 ⁻³	0.08 MPaA				
1X C000	to 30	4.9×10 ⁻⁴	50	1.1×10 ⁻³			2 m		
	to 6	1.2×10 ⁻⁵	25	2.8×10 ⁻⁴					
	to 150	6.3×10 ⁻³	100	6.3×10 ⁻³	0.00 WII d/				
IX-C150	to 113	2.3×10 ⁻³	75	3.6×10 ⁻³					
	to 75	7.0×10 ⁻⁴	50	1.6×10 ⁻³					
	to 15	1.8×10 ⁻⁵	25	4.0×10 ⁻⁴					

- Pi: Inertia resistance per meter (based on clean water, suction line I.D. should be equal to the pump suction connection as a minimum.)
- Calculate inertia resistance per meter using the following formula. $Pi = Pid \text{ (or Pis)} \times Specific gravity} \times Pipe length (m) \times (Pump I.D. ÷ Pipe I.D.)^2(MPa)$
- Suction speed is set to 100% as the default setting. Reduce speed when handling viscous or gaseous liquids to prevent the possibility of cavitation. Note the suction speed is used to control maximum discharge capacity.
- e.g.) If suction speed is set to 75%, maximum discharge capacity is correspondingly reduced to 75% (45 L/h for IX-C060).
- Discharge capacity may be reduced from rated performance when pumping highly viscous liquids. Select a suitable pump size according to liquid viscosity. Calibration accuracy may be reduced with liquid viscosities of over 500 mPa-s. Review piping layout as necessary. Contact us if handling liquid viscosities of over 1000 mPa-s.
- · Applicable chamber: Capacities are based on Iwaki standard chamber sizes. Contact us for chamber materials.
- · High accuracy: ±1% (This accuracy may not be met at flows below 1.0 L/h for the IX-C150S6. For model IX-C060S6, accuracy may not be met at flows below 0.4 L/h)
- Liquid temperature range: 0-50 °C(TC/TE type), 0-80 °C(S6 type) No viscosity change, Non freezing, No slurry
- $Accurate \ calibration \ may \ not \ be \ possible \ with \ liquid \ temperatures \ over \ 60^{\circ}C \ and \ discharge \ pressures \ over \ 0.8 MPa. \ For \ optimum \ accuracy, \ calibration \ must \ be \ performed \ below \ these \ parameters.$

Relief valve Model RV

Reciprocating pumps keep running even in closed-discharge operation, resulting in piping breakage and motor failure by overpressure without a relief valve. Always install the relief valve to prevent overpressure in a discharge line.

Model	Wet-	end m	aterials	Max. capacity	Setting pressure	Connection	Mass	
			L/min (L/h)	MPa	JIS10K Flange	kg		
RV-7TV-15			FKM			15A		
RV-7TE-15	מעטר	PTFE	EPDM	7.5 (450)		137	5	
RV-7TV-25	PVDF	PIFE	FKM	7.5 (450)	0.3 - 0.8	25A		
RV-7TE-25			EPDM					
RV-2S6-15	SUS316			2.0 (120)	0.3 - 0.8	15A	3.5	
RV-2S6B-15			PTFE		0.8 - 1.5	15A (JIS16K)		
RV-7S6-25	SCS1	4	FILE	7.5 (450)	0.3 - 0.8	25A		
RV-7S6B-25	1			7.5 (450)	0.8 - 1.5	25A (JIS16K)	6	
RV-3P-15	PVC					15A		
RV-3P-20			PTFE	3.0 (180)	0.3 - 1.0	20A	0.6	
RV-3P-25						25A	0.9	

2 Back pressure valve Model BV

Install a back pressure valve when discharge-line pressure is less than 0.03 MPa or less than than suction-line pressure. Pump check valves may otherwise not operate correctly and overfeeding may result. Differential pressure between discharge and suction lines must be 0.03 MPa or more and also greater than the inertia resistance (Pid or Pis, whichever greater). Differential pressure (0.03 MPa or more) > Inertia resistance (Pid or Pis, whichever is greater)

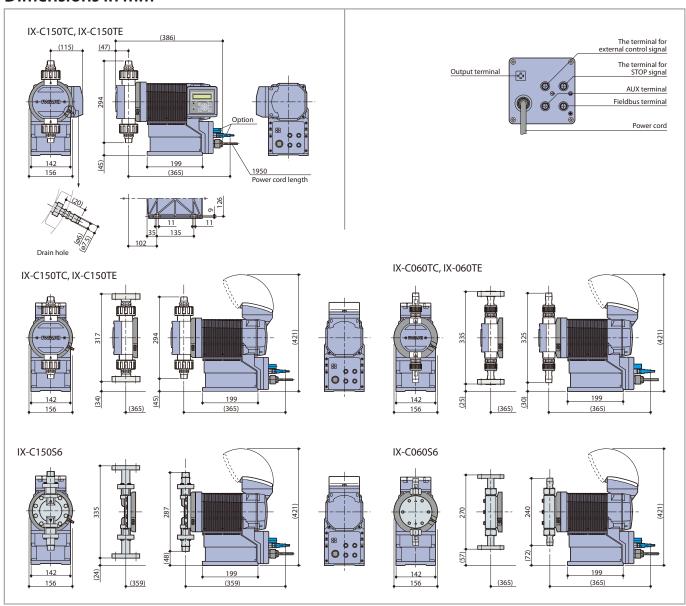
is,	
.03	Ν
eve	eı

Model	Wet-end materials			Capacity	Setting pressure	Connection	Mass	
				L/min (L/h)	MPa	JIS10K Flange	kg	
BV-7TV-15		FKM	15A					
BV-7TE-15	PVDF	DTEE	EPDM	0.2 - 7.0 (12 - 420)	0.05.00	137	5	
BV-7TV-25	PVDF	PTFE	FKM	0.2 - 7.0 (12 - 420)	0.05 - 0.8	25A)	
BV-7TE-25			EPDM			23A		
BV-2S6-15	SUS3	16	PTFE	0.02 - 2.0 (1.2 - 120)	0.05 - 0.8	15A	3.5	
BV-7S6-25	SCS1	4	FIFE	0.2 - 7.5 (12 - 450)	0.03 - 0.8	25A	6	
BV-3NV-15						15A		
BV-3NV-20		FKM	FKM			20A	0.6	
BV-3NV-25	DVC		0.03 3.0 (1.0 100)	01.03	25A	0.9		
BV-3NE-15	PVC	PVC		0.03 - 3.0 (1.8 - 180)	0.1 - 0.3	15A	0.6	
BV-3NE-20	E-20		EPDM			20A	0.6	
BV-3NE-25					25A	0.9		

Contact us for use at smaller flow rates than the above.

3 Air chamber Model A

The air chamber reduces flow pulsation to prevent piping vibration and overfeeding. An air chamber designed for slurry transfer is also available. Contact us for detail.



SUS type PVC type

Model	Wet-end materials	Capacity	Max. pressure	Connection	Mass	
		L	MPa	JIS10K Flange	kg	
A-1S6-15				15A		
A-1S6-20	SUS316	1.5	0.9	20A	5	
A-1S6-25				25A		
A-2VV	PVC	2	0.5	15 - 25A shared	2.5	
A-2VE	PVC	2	0.5	15 - 25A Shared	2.5	

FKM O rings (A-2VV) and EPDM O rings (A-2VE) are not wet end materials.

Dimensions in mm

www.iwakipumps.jp

IWAKI CO.,LTD. 6-6 Kanda-Sudacho 2-chome Chiyoda-ku Tokyo 101-8558 Japan TEL: (81)3 3254 2935 FAX: 3 3252 8892

EUROPE /	U.S.A.			ASIA /	OCEANIA		()Country codes
European office	: IWAKI Europe GmbH	TEL: (49)2154 9254 0	FAX: 2154 9254 48	Australia	: IWAKI Pumps Australia Pty Ltd.	TEL: (61)2 9899 2411	FAX: 2 9899 2421
Holland	: IWAKI Europe (NL Branch)	TEL: (31)547 293 160	FAX: 547 292 332	China	, ,		
Austria	: IWAKI (Austria) GmbH	TEL: (41)26 674 93 00	FAX: 26 674 93 02	Hong Kong	: IWAKI Pumps Co., Ltd.	TEL: (852)2607 1168	FAX: 2607 1000
Belgium	: IWAKI Belgium N.V.	TEL: (32)13 67 02 00	FAX: 13 67 20 30	Shanghai	: IWAKI Pumps (Shanghai) Co., Ltd.	TEL: (86)21 6272 7502	FAX: 21 6272 6929
Denmark	: IWAKI Nordic A/S	TEL: (45)48 24 2345	FAX: 48 24 2346	Guangzhou	: GFTZ IWAKI Engineering & Trading Co., Ltd.	TEL: (86)20 8435 0603	FAX: 20 8435 9181
Finland	: IWAKI Suomi Oy	TEL: (358)9 2745810	FAX: 9 2742715	Beijing	: GFTZ Iwaki Engineering & Trading Co., Ltd. (Beijing office)	TEL: (86)10 6442 7713	FAX: 10 6442 7712
France	: IWAKI France S.A.	TEL: (33)1 69 63 33 70	FAX: 1 64 49 92 73	Korea	: IWAKI Korea Co.,Ltd.	TEL: (82)2 2630 4800	FAX: 2 2630 4801
Germany	: IWAKI Europe GmbH	TEL: (49)2154 9254 50	FAX: 2154 9254 55	Malaysia	: IWAKIm Sdn. Bhd.	TEL: (60)3 7803 8807	FAX: 3 7803 4800
Italy	: IWAKI Italia S.R.L.	TEL: (39)0444 371115	FAX: 0444 335350	Singapore	: IWAKI Singapore Pte Ltd.	TEL: (65)6316 2028	FAX: 6316 3221
Norway	: IWAKI Norge AS	TEL: (47)66 81 16 60	FAX: 66 81 16 61	Indonesia	: IWAKI Singapore (Indonesia Branch)	TEL: (62)21 6906606	FAX: 21 6906612
Spain	: IWAKI Iberica Pumps, S.A.	TEL: (34)943 630030	FAX: 943 628799	Taiwan	: IWAKI Pumps Taiwan Co., Ltd.	TEL: (886)2 8227 6900	FAX: 2 8227 6818
Sweden	: IWAKI Sverige AB	TEL: (46)8 511 72900	FAX: 8 511 72922	Thailand	: IWAKI (Thailand) Co.,Ltd.	TEL: (66)2 322 2471	FAX: 2 322 2477
Switzerland	: IWAKI (Schweiz) AG	TEL: (41)26 674 93 00	FAX: 26 674 93 02	Vietnam	: IWAKI Pumps Vietnam Co., Ltd.	TEL: (84)613 933456	FAX: 613 933399
U.K.	: IWAKI Pumps (UK) Ltd.	TEL: (44)1743 231363	FAX: 1743 366507				
U.S.A.	: IWAKI America Inc.	TEL: (1)508 429 1440	FAX: 508 429 1386				
Argentina	: IWAKI America Inc. (Argentina Branch)	TEL: (54)11 4745 4116					

Legal attention related to export.

Our products and/or parts of products fall in the category of goods contained in control list of international regime for export control. Please be reminded that export license could be required when products are exported due to export control regulations of countries.

CAT-W 0031-03 2011.05.2000.KDN